Hermite Interpolation in the Roots of Unity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained Interpolation via Cubic Hermite Splines

Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation.  It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...

متن کامل

Hermite Interpolation Outperforms Nyström Interpolation

Hermite interpolation is shown to be much more stable than Nyström interpolation in the context of solving classic Fredholm second kind integral equations of potential theory in two dimensions using panel-based Nyström discretization. AMS subject classification (2000): 31A10,45B05,65D05,65R20.

متن کامل

Roots of unity in orders

We give deterministic polynomial-time algorithms that, given an order, compute the primitive idempotents and determine a set of generators for the group of roots of unity in the order. Also, we show that the discrete logarithm problem in the group of roots of unity can be solved in polynomial time. As an auxiliary result, we solve the discrete logarithm problem for certain unit groups in finite...

متن کامل

Stable Computation of the Complex Roots of Unity Stable Computation of the Complex Roots of Unity

In this paper, we show that the problem of computing the complex roots of unity is not as simple as it seems at rst. In particular, the formulas given in a standard programmer's reference book Knuth, Seminumerical Algorithms, 1981] are shown to be numerically unstable, giving unacceptably large error for moderate sized sequences. We give alternative formulas, which we show to be superior both b...

متن کامل

Quantum Hermite Interpolation Polynomials

Abstract. The concept of Lagrange and Hermite interpolation polynomials can be generalized. The spectral basis of idempotents and nilpotents of a factor ring of polynomials provides a powerful framework for the expression of Lagrange and Hermite interpolation in 1, 2 and higher dimensional spaces. We give a new definition of quantum Lagrange and Hermite interpolation polynomials which works on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1996

ISSN: 0021-9045

DOI: 10.1006/jath.1996.0004